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Propagation Along a Braided Coaxial Cable

in a Circular Tunnel

JAMES R. WAIT, reLLow, TEEE, AND DAVID A. HILL, MEMBER, IEEE

Abstract—The modes of propagation along a coaxial structure
contained within a circular tunnel are considered. The primary ob-
jective is to develop an approximate impedance boundary condition
at the outer surface of the shielded cable that can be used in pre-~
viously developed formalisms for axial conductors in tunnels. It is
assumed that the metal braid can be characterized by a surface-~
transfer impedance. We also account for the possibility that a lossy
film exists on the outer surface of the dielectric jacket of the cable,

INTRODUCTION

HERE IS A NEED to understand how electromag-

netic waves propagate in tunnels if improved com-
munication systems in mines are to be developed in a
logical fashion. One approach now being developed is to
exploit the leaky-feeder principle [1]. In this method,
which can be described as continuous-access communica-
tions, the signals are guided by transmission lines or
shielded conductors. The principal idea is that energy can
be coupled into and out of the transmission channel by
antennas that only need be in the general vicinity of the
two-wire line or cable.

In developing the theory of mode propagation along
axial conducting structures in cylindrical tunnels, we
need to apply an impedance boundary condition at the
outer surface of the guiding structure. In the case of a
bare metallic wire, the appropriate expression to use is
the series impedance Z, defined as follows: Z; = E,/I
where I = ¢ H,ds. Here, E, is the average axial field at
the surface of the conductor, while H, is the azimuthal
magnetic field. For a thin circular wire of radius e with
electromagnetic constants o., €., and p,, we can use the
following argument.

FORMULATION FOR IMPEDANCE OF AN
INNER CONDUCTOR

A cylindrical coordinate system (p, ¢,2) is adopted
such that the surface of the wire is p = a. If the external
fields are now locally uniform, we can neglect the azi-
muthal variation around the wire and consider only the
axial current flow. For fields that vary as exp (— Iz + twt)
where I' is a propagation constant, the Hertz vector has
only a z component II,. Thus, within the wire p < a, we
can write
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E, = (k2 -+ 3/02)1L, = (k2 + DI,
Hy = — (o + Tepw)dll,/dp (1)
where
thy = [ (Tupw) (60 + te,w) M2

The appropriate form of the solution for II,, is the modified
Bessel function Io[Z(k,? + I'?)2p7] times a constant factor.
Thus according to our basic definition

Zi = B,/ (27pH}) |pma (2)

or

7 Pk + T2)V2 I[i(k,? + T?)V2q] ;
T 2 (oo + teww)a L1 (k2 + T2)Y2%q]" (3)

In the usual ease where | I'? | < | k,? | this simplifies to

7.~ (Tao ) 112 Iy (tk,a)
" 21 (0w + teww) V20 Iy (th,a)

(4)

In the de limit (i.e., @ — 0) we see that Z,; reduces to the
expected form (wa*s,) .

In previous papers on this subject, we have used the
boundary condition E, = IZ; to apply to the surface of
the thin wire even when the external region is complex.
Two examples were axial conductors in a circular tunnel
[2] and an axial conductor in a rectangular tunnel [3].
The justification for this type of boundary condition is
that the external fields are locally uniform. Thus, on
physical grounds, we expect the results to be valid when
the wire radius is small compared with the distanceto
neighborhood surfaces and when the quantity | 8a | < 1.
Here B is the effective transverse wavenumber in the
external region. There is some experimental support for
this analytical approach to such problems [4].

EXTENSION TO BRAIDED SHIELD, DIELECTRIC
LAYERS, AND OUTER LOSSY FILM

We now wish to extend this series-impedance concept
to the case where the axial wire conductor is covered by a
layer of perfect insulation of radius b with dielectric con-
stant e and free-space permeability w,. To allow for the
presence of a metal braided shield, we assume that there
is a thin uniform sheath of radiys b with a designated
transfer impedance Zr in ohms/meter. Surrounding this,
we have a coating whose dieclectric constant is ¢ it is
also assumed lossless and a has a free-space permeability.
Finally, to allow for a layer of mine dust or conducting
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fluid, we assume there is a thin outer layer of conductive
material with a transfer impedance Z;. This situation is
illustrated in Fig. 1 where the cross section of this braided
coaxial cable with lossy outer sheath is depicted.

The situation is admittedly simplified, particularly with
regard to the thin uniform sheath representation of the
braided shield. In fact, the nonuniformities of the braid
and random perforations of the shield will play an impor-
tant role in the performance of an actual system. However,
for present purposes we will consider just a uniform or
smoothed-out version of the braid. We ‘can rely on other
work [5] to give us an estimate on the expected value of
the transfer impedance Zy. In a similar fashion, we justify
the use of the transfer impedance Z;, for the external lossy
film. The appropriate value here can be estimated from
the approximate formula Z; ~ (2wrcod)! @/m, where od
is the conductivity-thickness product of the lossy film.
Such an easily recognizable expression is justified when d
is small compared with the electric skin depth (2/ouw)?
of the film material, and also d should be small compared
with the radius c. -

The brief derivation given below for the effective series
impedance follows the classical approach for cylindrical
structures [6], [7]. .

The axial electric field and the azimuthal magnetic field
for the three regions thus have the following form for fields
that vary as exp (iwt — T2):

E, = (k* + DI = g1
for a<p<b (5)

Hy = —14ewdll/ap
E, = (k2 + I, = BAL

for b<p<c (6)
Hy = —7e,00M,/dp

and

B, = (ke + T, = By,

for p>c¢ (7
H¢ = *—iéowano/ap

where II, IT,, and II, are the Hertz potentials for the three
respective regions. Also 8, 8., and B, are the corresponding
transverse wavenumbers and they are defined as indicated
above. Now in any of the three regions, the Hertz poten-
tials can be written as linear combinations of the Bessel
functions Jo and Y, with arguments Bp, 8.0, and Bop,
respectively. Then, for example, for the first region we

2 z(r?

CONDUCTOR
p=o

INSULATION -~
BRAID
LOSSY FILM

Fig. 1. The geometry of the coaxial structure showing the orienta-

tion of the cylindrical coordinate system.
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deduce readily that
E, = g2 [PJy(Bp) + QYo(Bp)]

for a<p<b (8)
Hy = iewB[PJ1(Bp) + QY1(8p)]
and
Ecz = ﬁcgl:Zl/[JO(ﬁcP) -+ NYO(BCP):I

for b<p<e.

ngs = iecf-’)ﬁc[z‘{Jl(lgcp) + NYl(ﬂcp)]

(9)

Here P, Q, M, and N are constants yet to be determined.
We have similar expressions in the external region, but here
we utilize the fact that the “scattered” field is an outgoing
wave and thus the solution for II, is characterized by a
linear combination of J, and Ho® where the latter is the
Hankel function of the second kind. Thus we can write

By, = A[J0(509> + R0H0<2) (600)]
for p>c.
Ho¢ = Aiéowﬁo_1[J1 (,80})) + R0H1(2) (609>]

(10)

Here A can be regarded as the strength of the axial electric

field of the “primary’”’ wave at p = 0 that would exist if
the structure were not present. The coefficient R, then
determines the relative strength of the scattered field.
Obviously, if the parameter | Boc | is not sufficiently small,
we would need to include Bessel functions of order m and
the factor exp (¢m¢) in the solutions for all the Hertz
potentials.

The boundary conditions for the problem can now be
stated succintly as follows:

E, = 2waZ@H¢ at p=a (1)
E, = E,, at p=b (i)
Hy — Hyy = —~(27bZp)7'E, at p=205 (iii)
E.. = E,, at p=¢ (iv)
Hoy — Hyy = — (2wcZ;)'E, at p=c. (v)

Here (i) is the impedance boundary condition that we
impose at the surface of the inner conductor. It is an
“exact” condition if we use (3), but for practical purposes,
Z; can be taken to be independent of I' so that (4) is
adequate. Conditions (ii) and (iv) indicate that the axial
electric field is effectively continuous through the braid
and the lossy-film layer. This is a consequence of the
assumed thinness of these layers (i.e., the thicknesses are
small compared with the effective wavelength in the
respective media).

From houndary condition (i) above, we easily deduce
that

_ Us(Ba) — 2rakZi(Bn)V1(Ba) ]
[Yo(8a) — @2wakZ:(Bn)~ 71 (Ba) ]

where 7 = uw/k = (u/e)l2 Similarly, from (ii) we find

Q/P =R = (11)
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that
Bo2 Jo(B:b) + R.Yo(B.b)
P=M—= 12
B> Jo(Bb) + RYo(8b) (12)
where R, = N/M. Then an application of (iii) yields
_ E@_c_kf _ ﬂ02J0<Bcb)
R, = {.32( o J1(B:b) —21rbZT ) X (Jo(BD)
18k
+ RY,(8b)) — —n—ﬁc?JO(ﬁcb) [/1(Bb) + RYI(Bb)]}

X {_62 (lﬁﬂkc Yl(Bcb) - 6c2Y0(ﬂvb))

770 27l’bZT
X (Jo(8b) + RY,(Bb))

+ ?C B2Yo(B:b)[/1(80) + RY1(Bb)]}_ :

(13)
An application of (iv) tells us that MBAJo(B.c) +
R.Yo(B.0) ] = A[Jo(Boc) + RoH® (Boc) ]. Combining this
with (v) yields
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B, >~ @[P + (2/7)Q1n 0.898p]

a<p<b (16)

Hy >~ —(2/m)iewl/p

Ee. >~ B2 M + (2/7m)N1In 0.898.p]]
b<p<e (17)
Hy~ —(2/7)te 0N /p

and

Ep,~ A[1 + R(1 — (42/7) In 0.898p ]
c<p<p (18)

Hoy >~ —A(2/7)iewR/p

Here p is any value greater than ¢ chosen such that
| Bop | < 1. It is useful to note that in each region Hy X p
is a constant in this limiting situation.

As an exercise, we can now apply boundary conditions
(i)—(v) and get explicit quasi-static forms for the coeffi-
cients, or we can insert the small-argument approximations
in the Bessel functions in (11)-(15). In either case, we
obtain the following formula for the effective series
impedance:

thy BoJo(Boc) k. BoJ1(Bsc) + R.Y1(Bec) ]
—J —_— - — — J
[‘flo VB ey T me Bedo(Be) + ReYa(Ba) TP
Ry = — (14)
ko B()HO(Z) (506) k. Bo Jl(BcC) + RGYI(BcC) ]
iy e _pero PR e Ho@ (Boc
[7]0 ' (BOC) 2"rCZL Ne Be Jo(ﬁcc) + RGYO(ﬁcC) ’ (ﬂﬂ )
Now the desired result is the effective series impedance Z(T) ~ Z1(Zs + Zy) (19)
defined by I+ Z.+ 7,
E,,
Z(T) = ; ;I at p=c where
“metoe g Zr(Z + Z) (20)
N TR
_ Bomo[Jo(Boc) + EoHo® (Boc) ] (15) Zr + 72"+ Zi
meikal Ty (Boc) + BoHL® (Boe)]"  where
QUASI-STATIC LIMITING FORM FOR Z(T) k* 4+ 12
. . . . 7z = — ——In (b/a) (21)
The resulting expression for Z(T') that is a function of 2miew
the axial propagation constant T is rather involved. For-
tunately, considerable simplification ensues if we consider and
the case where the arguments of the Bessel functions are k2 4 T2
sufficiently small that only the leading terms in their Z, = — f) 1,' In (¢/b). (22)
2mlew

power-series expansions need be retained. In this connec-
tion it might be mentioned that in some important cases
B¢ may not be “small” even when Byc is small. For example,
this could occur when I' ~ ko, in which case Boc is small
even though ki may be comparable with one. However,
in the quasi-static limit that we discuss below, it will be
assumed that all the arguments are small.

To provide insight into the quasi-static limiting forms,
we write out the field expressions that correspond to (8)—
(10). Here we utilize the small-argument approximations
Jo(x) = 1, Ji(x) > 2/2—0, Yo(z) — (2/7) In0.89z,
and Yi(z) = —2/(xz). Thus

The equivalent circuit for this situation is the ladder net-
work shown in Fig. 2. The terminating element Z; is the
impedance of the inner conductor while the shunt elements
Zp and Zy, are the transfer impedances of the braid and

z z

Fig. 2. The equivalent ladder network that yields the effective
series impedance of the cable in the quasi-static approximation.
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the external lossy film. The series elements Z, and Z’ can
be identified as short sections of transmission lines whose
properties depend on I'. We stress that this quasi-static
equivalent circuit is only valid when all the Bessel-func-
tion arguments are small compared with one. The expres-
sion for the series impedance given by (15) is not so
restricted. -

APPLICATION TO CIRCULAR-TUNNEL MODEL

We now consider the circular-waveguide model of a
mine tunnel. The situation is depicted in Fig. 3 where the
tunnel radius is a, while the cable is located at a distance
po from the tunnel axis. In an earlier paper [2], we deter-
mined the axial propagation constants of the permitted
modes of the structure that satisfied both the impedance
boundary conditions at the waveguide wall and at the
surface of an axial conductor whose series impedance is
specified. In the present case, the axial structure in the
waveguide is the braided coaxial that we discussed pre-
viously. The impedance boundary condition is to be
applied at the outer surface of the lossy-film coating whose
radius is ¢. As indicated in Fig. 3, the distance of the cable
from the tunnel wall is @y — po. In order for the solution
to be valid, ¢ should be small compared with @, — po.

As in the earlier paper, the homogeneous medium bound-
ing the tunnel walls has a conductivity ¢. and a permittiv-
ity e. In what follows, we choose ¢, = 102 mho/m,
e. = 10¢, and ap = 2 m. The interior region of the wave-
guideis free space, except at the braided coaxial. The
dimensions of the latter, with reference to Fig. 1, are
taken as follows: ¢ = 1.5 mm, b = 10 mm, and ¢ = 11.5
mm. Also, for purposes of illustration, we take the transfer
impedance Zr of the braid to be iwL where L = 40 nH/m.
This corresponds to the FoNT cable developed by
Fontaine et al. [5].

The relative dielectric constant ¢/¢ of the insulator is
taken to be 2.5 corresponding to polystyrene, for example.
For an optimum system, we might have chosen a lower
value but, for present purposes, this is not important. For
the outer coating, the relative dielectric constant e/¢ is
taken to be 3.0 corresponding to typical jacket material.
To allow for the presence of the outer lossy film, we choose
the transfer impedance Z;, = [2wc(ed) ]! where the con-
ductivity—thickness product is to be specified. For example,
a conducting fluid layer with ¢ = 10 mho/m whose thick-

Fig. 3. The circular-waveguide ﬁodel showing the location of the
cable.
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ness d = 1 mm leads to (¢d) = 102 mho. As indicated
by Rawat and Beal [8], the presence of such lossy films
in realistic mine environments should be expected.

Using the above analytical machinery, we illustrate
some results for the dominant modes of the braided cable
located in the cylindrical structure. There are two impor-
tant modes that we call the monofilar and bifilar modes.
The first of these is similar to the situation treated before
where we have a bare uncoated wire in the waveguide
[2], [3]. In that case, the return current flows along the
walls of the cylindrical waveguide. The second type is
analogous to the currents flowing in a two-wire trans-
mission line and the characteristic of this bifilar mode is
almost independent of the waveguide walls. For the
braided coaxial structure, this particular mode is the
conventional one sinee the currents in the center conductor
and braid are approximately equal but with opposite signs.

In Fig. 4, we show the attenuation rate (in
nepers/meter) for the monofilar mode as a function of
frequency from 0.2 to 200 MHz. Several values of py/ao
are indicated as are two values of (ad). Also for this
example, the conductivity o, of the center conductor is
taken to be 107 mho/m, but for this mode, the attenuation
is not critically dependent on ¢,. Also, except for higher
frequencies, the attenuation rate is not influenced appre-
ciably by (od) for values even as high as 10~ mho. As
expected, of course, the attenuation rate for this monofilar
mode increases as the coaxial is moved toward the wall.
Note that po/as = 0.9 corresponds to a distance s — s, =
20 ¢cm ~ 8 in from the wall.

In Fig. 5 we show some corresponding results for the
bifilar or coaxial-type mode. Since there is a strong
dependence on the conductivity oy, of the inner conductor,
three different values are selected. The highest value
0w~ 5.7 X 10/ mho/m corresponds to copper. In this
case, we also see that the results depend somewhat on the
(ed) values, particularly at the upper frequencies. The
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Fig. 4. The attenuation rate of the monofilar mode as a function of
frequeney. ay = 2 m.
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Fig. 5. The attenuation rate of the bifilar mode illustrating the
dependence on the conductivity of the inner conductor and the
effect of the external lossy film. e = 2.5¢: €. = 8.0e0: L = 40
nH/m.
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Fig. 6. The attenuation rate of the bifilar mode for a smaller value
of the surface transfer impedance. ¢, = 5.7 X 10" mho/m: L = 4
nH/m: e = 2.5¢: e, = 3.0¢o.

presence of the lossy film increases the attenuation of the
bifilar mode for the range of frequencies and ¢d parameter
considered in this figure. Actually, for the curves in Fig. 5
we have chosen po/ao = 0.8, but the results for this bifilar
mode hardly depend at all on the value of py/ae. In fact,
the curves would be indistinguishable for 0 < pp/ag < 0.9.

In Fig. 6 we show the corresponding bifilar mode atten-
uation for the copper inner conductor. Herc we choose the
transfer inductance L = 4 nH/m that is a factor of 10
lower than before. The important point here is that the
attenuation rate depends only slightly on the conductiv-
ity-thickness product (od) of the outer lossy film. Thus,
while high values of L are desirable from the standpoint
of coupling to the desired bifilar mode, we can expect a
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greater susceptibility to the presence of lossy fluid or
mine-dust layers on the outer jacket.

CONCLUDING REMARKS

The present results are believed to be a useful basis for
the design of leaky-feeder communications systems that
employ shielded cables in mine tunnels. The analytical
method can be applied equally well to rectangular tunnels
[97]. The effect of axial nonuniformities in the guiding
structures needs to be considered if we are to utilize fully
the capabilities of both the monofilar and the bifilar
modes.

In principle, the method could be applied at much
higher frequencies for single dielectric-coated conductors
where the dominant mode would be a surface wave [10]-
[127] whose energy is confined to the cable. Several diffi-
culties emerge here. First of all, the assumption of local
uniformity of the fields about the cable would need to be
removed. Also, the hostile environment in most mine
tunnels would produce very high attenuation due to
moisture and coal dust. Also, the coupling to the surface-
wave line would be not feasible for a roving miner. Never-
theless, we should keep an open mind on the possible
relevance of Goubau-type surface-wave lines in mine
environments.
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