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Propagation Along a h-aided Coaxial cable

in a Circular Tunnel

JAMES R. WAIT, FELLOW, IEEE, AND DAVID A. HILL, MEMBER, IEEE

Abstract—The modes of propagation along a coaxial structure

contained within a circular tunnel are considered. The primary ob-
jective is to develop an approximate impedance boundary condition
at the outer surface of the shielded cable that can be used in pre-
viously developed formalisms for axial conductors in tunnels. It is

assumed that the metal braid can be characterized by a surface-
transfer impedance. We also account for the possibility that a Iossy
fihn exists on the outer surface of the dielectric jacket of the cable.

INTRODUCTION

THERE IS A NEED to understand how electromag-

netic waves propagate in tunnels if improved com-

munication systems in mines are to be developed in a

logical fashion. One approach now being developed is to

exploit the leaky-feeder principle [1]. In this method,

which can be described as continuous-access communica-

tions, the signals are guided by transmission lines or

shielded conductors. The principal idea is that energy can

be coupled into and out of the transmission channel by

antennas that only need be in the general vicinity of the

two-wire line or cable.

In developing the theory of mode propagation along

axial conducting structures in cylindrical tunnels, we

need to apply an impedance boundary condition at the

outer surface of the guiding structure. In the case of a

bare metallic wire, the appropriate expression to use is

the series impedance Z, defined as follows: Zi = EJI
where I = # Ht d.s. Here, E. is the average axial field at

the surface of the conductor, while H, is the azimuthal

magnetic field. For a thin circular wire of radius a with

electromagnetic constants u., em, and p., we can use the

following argument.

FORMULATION FOR IMPEDANCE OF AN

lNNER CONDUCTOR

A cylindrical coordinate system (P, +, z) is adopted

such that the surface of the wire is p = a. If the external

fields are now locally uniform, we can neglect the azi-

muthal variation around the wire and consider only the

axial current flow. For fields that vary as exp ( – I’z + icot)

where r is a propagation constant, the Hertz vector has

only a z component H.. Thus, within the wire P 5 % we

can write
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i!?, =: (k’ + &/&’) IIW = (k.’ + r’)rr.

H+ == – (a. + ie.m) t)&/dp (1)

where

ikw =: [(ipw@) (fJw + i%u) ]1/’.

The appropriate form of the solution for ~W is the modified

Bessel function 10[i(kW2 + I“) 112p]times a constant factor.

Thus according to our basic definition

Zi = Ez/ (27rpH@) 1,=. (2)

or

z% =
i(kw2 + rz) 1/2 Io[i(?cwz + I’z) 1/2a]

z~ (OW+ kdd) a 11[i(kw2 + rz) 1/2a] “
(3)

In the usual case where I 1’2 I << I lc~2I this simplifies to

(4)

In the de limit (i.e., a + O) we see that Zt reduces to the

expected form (~azu~) –l.

In previous papers on this subject, we have used the

boundary condition E, = IZi to apply to the surface of

the thin wire even when the external region is complex.

Two examples were axial conductors in a circular tunnel

[2] and an axial conductor in a rectangular tunnel [3].

The justification for this type of boundary condition is

that the external fields are locally uniform. Thus, on

physical grounds, we expect the results to be valid when

the wire radius is small compared with the distance to

neighborhood surfaces and when the quantity’ I flu I <<1.

Here P is the effective transverse wavenumber in the

external regicm. There is some experimental support for

this analytical approach to such problems [41].

EXTENSION TO BRAIDED SHIELD, DIELECTRIC

LAYERS, AND OUTER LOSSY FILM

We now wish to extend thk series-impedance concept

to the case where the axial wire conductor is covered by a

layer of perfect insulation of radius b with dielectric con-

stant e and free-space permeability po. To allow for the

presence of a metal braided shield, we assume that there
is a thin uniform sheath of “radius b with a designated

transfer impedance Z~ in ohms/meter. Surrounding this,

we have a coating whose dielectric constant is co; it is

also assumed Iossless and a has a free-space permeability.

Finally, to allow for a layer of mine dust or conducting
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fluid, weassume there isathin outer layer of conductive

material with a transfer impedance Z~. This situation is

illustrated in Fig. 1 where thecross section of this braided

coaxial cable with lossy outer sheath is depicted.
The situation is admittedly simplified, particularly with

regard to the thin uniform sheath representation of the

braided shield. In fact, the nonuniformities of the braid

and random perforations of the shield will play an impor-

tantrole intheperformance ofanactualsystem. However,

for present purposes we will consider just a uniform or

smoothed-out version of the braid. We”can relyon other

work [5]to giveus an estimate on the expected value of

the transfer impedance Z~. In a similar fashion, wejustify

the use of thetransfer impedance Z~for the externallossy

film. The appropriate value here can be estimated from

the approximate formula Z~s (27TcucZ)’1 !J/m, where ad

is the conductivity–thickness product of the lossy film.

Such an easily recognizable expression is justified when d
is small compared with the electric skin depth (2/uPu) 112

of the film material, and also d should be small compared

with the radius c.

The brief derivation given below for the effective series

impedance follows the classical approach for cylindrical

structures [6], [7].

The axial electric field and the azimuthal magnetic field

for the three regions thus have the following form for fields

that vary as exp (id – r~) :

E, =

He =

E, =

H+ =

and

E. =

H4 =

(k+ + r’)~ = ~zrf

1

for a<p<b (5)

— iWxYJ/dp

(k? + r’)nc ~ Pjrrc

! for b<p<c (6)

— ie,w811C/8p

(k,’ + r’) II, = fWIO

1

for p>c (7)

—&xNfcl/ap

where II, IL, and ?& are the Hertz potentials for the three

respective regions, Also B, DC,and P. are the corresponding

transverse wavenumbers and they are defined as indicated

above. Now in any of the three regions, the Hertz poten-

tials can be written as linear combinations of the Bessel

functions Jo
respectively.

Fig. 1.

and YO with arguments BP, &P, and ,80p,
Then, for example, for the first region we

EO
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The geometry of the coaxial structure showing
tion of the cylindrical coordinate system.

the orientw

deduce readily that

E, = ~2[~JO(@P) + QYo(6P) 1 I for a<p<b (8)

H@ = ia@[PJ1 (@p) + QY1(BP) ]

and

E., = Bc’[MJo(&P) + ~Yo(@cP) 1

I
for b<p <c.

Ho@= ie,yB,[i14J, (@c/J)+ NYI(LLP) 1
(9)

Here P, Q, M, and N are constants yet to be determined.

We have similar expressions in the external region, but here

we utilize the fact that the ‘(scattered” field is an outgoing

wave and thus the solution for 110 is characterized by a

linear combination of Jo and Hoc’) where the latter is the

Hankel function of the second kind. Thus we can write

Eo$ = ~ [Jo(@oP) + 80Ho(2) (80P) 1

t
for p > c.

Hod = A.ieou~o-’[J1 (Bop) + ROH1(2)(fiop) ]

(lo)

Here A can be regarded as the strength of the axial electric

field of the ‘(primary” wave at p = O that would exist if

the structure were not present. The coefficient Ro then

determines the relative strength of the scattered field.

Obviously, if the parameter 1130cI is not :ufficiently small,

we would need to include Bessel functions of order m and

the factor exp (ire@) in the solutions for all the Hertz

potentials.

The boundary conditions for the problem can now be

stated succib.tly as follows:

E. = 2raZ,H@ at p=a (i)

E= = EC. at p=b (ii)

H.+ – Ho+ = – (%cZL) ‘lE~ at p = C. (v)

Here (i) is the impedance boundary condition that we

impose at the surface of the inner conductor. It is an

‘(exact)’ condition if we use (3), but for practical purposes,

Zi can be taken to be independent of I’ so that (4) is

adequate. Conditions (ii) and (iv) indicate that the axial

electric field is effectively continuous through the braid

and the lossy-film layer. This is a consequence of the

assumed thinness of these layers (i.e., the thicknesses are

small compared with the effective wavelength in the

respective media).

From boundary condition (i) above, we easily deduce

that

Q/P=R=–
[Jo(@a) – i2ma?cZ,(8q)-’J, (6a) 1 ~11)

[YO(@a) – i27rakZ,(/3q)-’Y, (Qa) ]

where ~ = pco/lc = (p/c) 112.Similarly, from (ii) we find
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that

~= M&2 Jo(8,b) +R.Yo(fLb)
P’ Jo(Bb) +RYo(@)

(12)

where R. = N/M. Then an application of (iii) yields

{ (“&Z f32 &’J1(&b) _
/3c’Jo(/%b)

2~bZ~ )
X (!Jo(6b)

v.

+ RYo(~b) ) -‘$ /33J,(&b) L_J,(~b) + RY,((3b) ]}

X (Jo(Bb) +RYo(@b))

}

–1

+:k&’Yo(&b)[Jl(@b) +RY~(Bb)] . (13)

An application of (iv) tells us that MB/[Jo(i3.c) +

R. Yo(Lc)I = AIJo(Boc) +RoHo(2)(i30c)]. Combining this
with (v) yields
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E,=@’[P+ (2/7r)Qln0,89f?p]

1a<p<b (16)

H+ ~ – (2/r) iwQ/P

E., R @.’[ill + (2/7r)N in 0.89@0P]

1b<p<c (17)

H.+ r= – (2/7r) iwJN/p

and

Eo. N A[l + R(l – (i2/7r) In 0.89L30p]

IC< P<~. (18)

Ho$ s –~ (2/7r) i@wh!/p

Here $ is any value greater than c chosen such that

I B06 I <<1. It is useful to note that in each region Ho x p
is a constant in this limiting situation.

As an exercise, we can now apply boundary conditions

(i)-(v) and get explicit quasi-static forms for the coeffi-

cients, or we can insert the small-argument approximations

in the Bessel functions in (11) – ( 15). In either case, we

obtain the following formula for the effective series

impedance:

[

ilc,
; J,(@oc) –

PJO (POC) iko @oJ1 (@Cc)+ R.YI (@CC)
Jo(@oc)

2TcZL – ; z Jo (&c) + R. Yo(f?,c)
Ro=–

1
[

(14)

@ HI(2) (~oc) –
POHO(’) (Boc) “_ ~ @ ~l(6cC) + ‘G ‘l(~cc) HO(2) (@oc)

70 27@L T?.p. Jo (8GC) + Rcyo (b) 1
Now the desired result is the effective series impedance

defined by
z(r) =

ZL(ZC + Zt))

zL+zc+zfj
(19)

z(r) =

—

Eoz
— at p=c

where

27rcHo~
z~ = Z.(Z’ + Z,)

130vo[Jo(fIoc) + RoHo(2) (pot) ] Z.+z’+z,
(20)

(15)
27rciii0[J1 (@oC)+ RoH1(2) (Boc) ] “ where

QUASI-STATIC LIMITING FORM FOR Z(I’)

The resulting expression for Z( I’) that is a function of

the axial propagation constant r is rather involved., For-

tunately, considerable simplification ensues if we consider

the case where the arguments of. the Bessel functions are

sufficiently small that only the leading terms in their

power-series expansions need be retained. In this connec-

tion it might be mentioned that in some important cases

@cmay not be “small” even when ~Ocis small. For example,

this could occur when 1’ ~ j%,, in which case 130cis small

even though k,a may be comparable with one. However,

in the quasi-static limit that we discuss below, it will be

assumed that all the arguments are small.

To provide insight into the quasi-static limiting forms,

we write out the field expressions that correspond to (8) –

(10). Here we utilize the small-argument approximations

JO(Z) ~ 1, J,(z) ~ z/2 -O, Yo(z) - (2/7) in 0.89z,

and Yl(z) ~ —2/(7rz). Thus

~2 + r2

zf=– - in (b/a)
22rtw

and

~; + p
zc=–

27rie@
In (c/b).

(21)

(22)

The equivalent circuit for this situation is the ladder net-

work shown in Fig. 2. The terminating element Zi is the

impedance of the inner conductor while the shunt elements

Z~ and ZL are the transfer impedances of the braid and

4#--t-k,

Fig. 2. The equivalent ladder network that yields the effective
eeries impedance of the cable in the quasi-static approximation.
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the external 10SSYfilm. The series elements 2. and Z’ can

be identified as short sections of transmission lines whose

properties depend on I’. We stress that this quasi-static

equivalent circuit is only valid when all the Bessel-func-

tion arguments are small compared with one. The expres-

sion for the series impedance given by (15) is not so

restricted.

APPLICATION TO CIRCULAR-TUNNEL MODEL

We now consider the circular-waveguide model of a

mine tunnel. The situation is depicted in Fig. 3 where the

tunnel radius is ao while the cable is located at a distance

po from the tunnel axis. In an earlier paper [2], we deter-

mined the axial propagation constants of the permitted

modes of the structure that satisfied both the impedance

boundary conditions at the waveguide wall and at the

surface of an axial conductor whose series impedance is

speeified. In the present case, the axial structure in the

waveguide is the braided coaxial that we discussed pre-

viously. The impedance boundary condition is to be

applied at the outer surface of the lossy-film coating whose

radius is c. As indicated in Fig. 3, the distance of the cable

from the tunnel wall is ao – p~. In order for the solution

to be valid, c should be small compared with ao – PO.

As in the earlier paper, the homogeneous medium bound-

ing the tunnel walls has a conductivity y u. and a permittiv-

ity e.. In what follows, we choose a. = 10–2 mho/m,

~e = 10co, and ao = 2 m. The interior region of the wave-
guide is free space, except at the braided coaxial. The

dimensions of the latter, with reference to Fig. 1, are

taken as follows: a = 1.5 mm, b = 10 mm, and c = 11.5

mm. Also, for purposes of illustration, we take the transfer

impedance ZT of the braid to be icoL where L = 40 nH/m.

This corresponds to the FONT cable developed by

Fontaine et al. [5].
The relative dielectric constant e/e. of the insulator is

taken to be 2.5 corresponding to polystyrene, for example.

For an optimum system, we might have chosen a lower

value but, for present purposes, this is not important. For

the outer coating, the relative dielectric constant eC/eois

taken to be 3.0 corresponding to typical jacket material.

To allow for the presence of the outer Iossy film, we choose

the transfer impedance Z~ = [27rc (m?) ]–] where the con-

ductivity-thickness product is to be specified. For example,

a conducting fluid layer with u = 10 mho/m whose thick-

Fig. 3. The circuhw-waveguid~afi~del showing the location of the

ness d = 1 mm leads to (ad) = 10–2 mho. As indicated

by Rawat and Beal [8], the presence of such 10SSYfilms

in realistic mine environments should be expected.

Using the above analytical machinery, we illustrate

some results for the dominant modes of the braided cable

located in the cylindrical structure. There are two impor-

tant modes that we call the monofilar and bifilar modes.

The first of these is similar to the situation treated before

where we have a bare uncoated wire in the waveguide

[2], [3]. In that case, the return current flows along the

walls of the cylindrical waveguide. The second type is

analogous to the currents flowing in a two-wire trans-

mission line and the characteristic of this bifilar mode is

almost independent of the waveguide walls. For the

braided coaxial structure, this particular mode is the

conventional one since the currents in the center conductor

and braid are approximately equal but with opposite signs.

In Fig. 4, we show the attenuation rate (in

nepers/meter) for the monofilar mode as a function of

frequency from 0.2 to 200 MHz. Several values of po/ao

are indicated as are two values of (m!). Also for this

example, the conductivity u. of the center conductor is

taken to be 107 mho/m, but for this mode, the attenuation

is not critically dependent on r.. Also, except for higher

frequencies, the attenuation rate is not influenced appre-

ciably by (ad) for values even as high as 10–1 mho. As

expected, of course, the attenuation rate for this mono filar

mode increases as the coaxial is moved toward the wall.

Note that po/ao = 0.9 corresponds to a distance s – so =

20 cm x 8 in from the wall.

In Fig. 5 we show some corresponding results for the

bifilar or coaxial-type mode. Since there is a strong

dependence on the conductivity u. of the inner conductor,

three different values are selected. The highest value

u. N 5.7 X 107 mho/m corresponds to copper. In this
case, we also see that the results depend somewhat on the

(ad) values, particularly at the upper frequencies. The

I !
02 05 1.0 2.0 50 100 200 500 10002000

FREQUENCY ( MHz)

Fig. 4. The attenuation rate of the monofilar mode as a function of
frequency. aO = 2 m.
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Fig. 5. The attenuation rate of the bifilar mode illustrating the
dependence on the conductivity of the inner conductor and the
effect of the external lossy film. 6 = 2.56.: c. = 3.060: L = 40
nH/m.

16’

I

~.
0.2 05 10 20 50 500 1000 2CO0

FREQUENCY ( MHz)

Fig. 6. The attenuation rate of the bifl.lar mode for a smaller value
of the surface transfer impedance. u. = 5.7 X 107 mho/m: L = 4
nH/m: e = 2.5eO: ●c = 3.OcO.

presence of the Iossy film increases the attenuation of the

bifilar mode for the range of frequencies and ud parameter

considered in this figure. Actually, for the curves in Fig. 5

we have chosen pO/aO= 0.8, but the results for this bifilar

mode hardly depend at all on the value of pO/aO. In fact,

the curves would be indistinguishable for O 5 po/ao 50.9.

In Fig, 6 we show the corresponding bifilar mode atten-

uation for the copper inner conductor. Hem we choose the

transfer inductance L = 4 nH/m that is a factor of 10
lower than before. The important point here is that the

attenuation rate depends only slightly on the conductiv-

ityy–thickness product (O@ of the outer lossy film. Thus,

while high values of L are desirable from the standpoint

of coupling to the desired bifilar mode, we can expect a
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greater susceptibility to the presence of lossy fluid or

mine-dust layers on the outer jacket.

CONCLUDING REMARKS

The present results are believed to be a useful basis for

the design of leaky-feeder communications systems that

employ shielded cables in mine tunnels. The analytical

method can be applied equally well to rectangular tunnels

[9]. The effect of axial nonuniformities in the guiding

structures needs to be considered if we are to utilize fully

the capabilities of both the monofilar and the bifilar

modes.

In principle, the method could be applied at much

higher frequencies for single dielectric-coated conductors

where the dominant mode would be a surface wave [10]–

[12] whose energy is confined to the cable. Several diffi-

culties emerge here. First of all, the assumption of local

uniformity of the fields about the cable would need to be

removed. Also, the hostile environment in most mine

tunnels would produce very high attenuation due to

moisture and coal dust. Also, the coupling to the surface-

wave line would be not feasible for a roving miner. Never-

theless, we should keep an open mind on the possible

relevance of Goubau-type surface-wave lines in mine

environments.
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